How to Create Dataset for Computer Vision

The groundbreaking applications of Artificial intelligence are attracting tech multinationals like Apple, Microsoft, Amazon and Facebook to work on their future projects with more AI focused strategies. The AI effect is influencing the product road map of all such companies having the renowned AI-based applications that are launched at regular intervals in a year to automate their business operations with more promising results.

Computer Vision is an important development under AI that has been extensively explored and applied into various industries from outdated to innovative self-driving cars moving on roads without human intervention. Such AI-backed innovative technologies work on such principles that encompass a huge amount of training data for computer vision.

To start Computer Vision or CV you need to follow certain steps that are listed below:

  1. Collection of a huge amount of data.
  2. Labeling of Data.
  3. GPUs required for — Training ML models that also need huge computational resources.
  4. Choosing the right algorithm Train your model Test it Teach the model what it doesn’t know yet.
  5. Repeating of above points till acceptable quality results not come.

All these steps have their own challenges in terms of technical know-how and operational activities, so here we will discuss and help you how to deal with the labeling of training data and other related aspects required to complete this process.

Before we start labeling of training data, you need aware where the technology of Computer Vision is effectively used to produce an AI-backed system or machine that can perform without too much human instructions and do their job independently as per the changing situations.

Self-driving Cars, Drones, Robotics, Mapping & Satellites, OCR / BFSI, Agriculture Technology, Medicine and many other fields where computer vision is playing a vital role in allowing machines to view and perceive like humans and perform with favorable actions.

The first steps towards AI-based computer vision technology are the collection of data that you need to gather from reliable sources. Though, there are many free online tools and paid standard datasets like Google’s Open Images and Image Net etc. are available that you can use to collect the data for developing computer vision applications.

Anyone looking to get started with the learning of machine learning can use these datasets that can be useful as a starting point for them. And these datasets can be also useful for the people looking to build a simple model for side projects. However, if you want to develop a real or effective computer vision model you need to collect proprietary training data similar to the data you expect for your final model to work flawlessly.

The best way to get such data is outsourcing to professional companies involves in providing data labeling services as per the customized needs. And outsourcing annotation, tagging images to experts like Cogito would be more favorable from every point of view.

You just need to share the data, few gold standard examples and labeling guidelines and Cogito will label training data as per your requirements. It is offering image annotation and label training data to mid-size business enterprises to large companies across the world with enterprise-grade service level agreement to deliver quality results with scalable turnaround times.

However, there are certain situations when you should do it in-house, especially for a small set but outsource when the data is a huge level. Actually, these outsourcing firms are also not scalable enough to handle even 100,000 image annotations in a small amount of time. Though few industry leaders provide a scalable service but customary crowd sourcing platforms like Amazon Mechanical Turk is merely a microtasks freelancing marketplace where all the efforts of task creation, worker incentivization, QA is the task creator.

Here, Computer Vision Training Data with Cogito means the use of the right mix of technical know-how and experience to annotate images for training data needs. Use of humans with AI-enabled resources Cogito works with a fully automated annotation process by using the latest technology and most suitable algorithms capable to detect objects for computer vision learning.

Click to >>>>>>>>> Continue

Cogito shoulders AI enterprises by deploying a proficient workforce for data annotation, content moderation and Training Data services.