Computer Vision in Artificial Intelligence Improve Accuracy Medical Imaging Data
Machines are getting trained through computer vision which is helping them to recognize the objects with in-depth analysis of its various attributes. And computer vision is now highly use in AI and ML-based projects developments.
What is Computer Vision in Machine Learning and AI ?
Computers play an excellent role in helping machines understand the different types of high-volume structural tasks performed by the humans. In healthcare medical imaging analysis it assist machines looking at by breaking down images into atomic components and analyzing the same based on prior indexing.
And this process is done by training the neural networks with huge amount of images in the process through machine learning. And a fully-functional machine learning model can recognize such images, when presented with image, similar to training data sets.
A neural network algorithm in healthcare can identify if there are any kind of health risks, with best level of accuracy.
Actually, computer vision is mainly used to perform for two different tasks. First — Object identification, in which objects are segregated new inputs in existing classes for which its has been trained. Secondly — Computer vision is used for object identification to differentiate between two items belonging to the same group.
Healthcare, is a key sector, computer vision is playing a bigger role in analyzing the medical images and diagnosis the various types of diseases accurately.
And with the more improvements in ground braking technology it is going to improve the medical imagining analysis for accurate predictions. So, right here we will learn how accuracy for computer vision for different types of medical imaging will improve.
X-Rays
X-rays are one of the most common used medical images in hospitals to identify the abnormalities, organ damage of human body or diagnoses the diseases. Here computer based vision can be trained to classify the scanned results like radiologist doctors do and diagnosis the potential health problems in a single view.
And with the more accurate training data that is created through medical image annotations to make the computer vision learn the similar patterns and train the machine learning algorithm learn and predict in the near future. And it is possible only when each x-ray image is precisely annotated for computer vision training.
Ultrasound
This is one of the most widely used imaging techniques utilized to diagnose the abdomen of people for kidney, liver and other organ functions. This imaging technique is also used for pregnant women for fetus checkup and diagnosis if any kind of complications can arise in near future to take health concerning decisions.
Using the huge amount of ultrasound images to train the medical imaging application, computer-vision ultrasound system can show the more comprehensive results with accuracy, that usually analyzed by the radiologists.
And if such models are trained with more accurate data, it will significantly enhance the level of accuracy in medical imaging analysis through machine learning.
Also Read: Top Five Best Usages of Artificial Intelligence in Healthcare Medical Imaging
CT Scans
CT scans shows a more detailed pictorial representation of body parts like brain, chest, and other part of body. It helps to detect the tumors, internal bleeding in brain or other organs and diagnosis any potential conditions of life-threatening diseases.
Here, if computer vision based technology is used to analysis such images with fully automated process, the precision level of prediction will increase. And using the machine based technology to identify such illness is that, it can detect the details at minute levels which is not easily visible to human eyes.
As per the recent research and studies at University of Central Florida, the accuracy level of of detecting lung cancer through such machines are 95% compare to well-trained and experienced doctors, who have accuracy of only 65% in detecting the similar types of diseases.
And results such predictions becomes more critical when used for diagnosing the strokes, brain damage or internal bleeding.
MRI
Magnetic resonance imaging (MRI) is one of the most advance level of medical imaging analysis to detect the various health problems like bone structure, problems in softer tissues, or joints and the circulatory system with better details.
Using the accurate image annotation techniques like semantic segmentation or polygons, machines are trained through computer vision to identify the clogged blood vessels and cerebral aneurysms among the patients diagnosed.
And with the time being, more qualitative and quantitative machine learning training data, the computer vision accuracy will improve resulting more precise diagnosis through medical imaging will improve the overall healthcare services.
Computer Vision Data
Use of Computer Vision in Artificial Intelligence for medical imaging diagnosis and analysis will definitely help patients to timely get to know about the life-threatening diseases.
The benefit is that, well-timed diagnosis of deadly maladies like cancer will not only help to save lives but also help spot slightest abnormalities among such patients.
And another advantages of using computer vision based technology is, it helps to save additional of tests and treatments incurred by the patients if diagnosis is wrong, which also psychologically affects the patients and their families.
And the best part of using computer vision in healthcare is machine learning algorithms can be also reused for other patients or data from other hospitals can easily transferred to train the machine learning algorithms to improve the accuracy level.
Also Read: How Much Training Data is Required for Machine Learning Algorithms?
The Challenges with Computer Vision-based Training
Finding the right data sets and relevant images for training machine learning in computer vision is the real challenge. To get the accurate data, such training data sets should be labeled with right tagging and annotations to make computer vision accurately recognize the object of interest and predict with right results.
Data privacy and personal security are another factors restrict access of such data. But with proper data management and anonymization techniques, patients data can save the life of many patients across the world.
However, relying fully on automated diagnosis and treatment process is not possible right now, as there are multiple technical barriers. But with the consistent improvement in technology over the last few years and further with more perfectly trained AI-enabled machines the medical image analysis will improve with groundbreaking results. This article was originally featured on Visit Here